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Abstract

A key to interacting with the physical world is the ability to infer object properties, such
as elasticity, from vision, allowing us to anticipate an object’s behavior in advance. This
kind of perceptual inference challenges current Al systems—nhighlighting the complexity
of the underlying computations. How does the human brain solve this task? Here, we
propose a resource-rational model based on learned statistics of object motion to
explain how humans judge elasticity. We created 100,000 physics-based simulations of
bouncing objects with different elasticities and found that even tiny changes in initial
conditions (e.g., orientation) yield starkly different trajectories. Yet, across these
simulations, we identified 23 motion features that capture natural variations in
elasticity. Although a weighted combination of these features reliably predicts physical
elasticity, surprisingly, humans do not seem to employ cue combination when judging
elasticity. Instead, we found that observers flexibly switch between different cues, i.e.,
heuristics. A series of experiments designed to carefully tease apart several competing
heuristics, suggests that observers switch between different computationally efficient
yet highly informative heuristics depending on the information available in the stimulus.
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Introduction

To grasp, catch, stack, or avoid objects, we need to infer their physical properties such
as elasticity, mass, compliance, or friction (Diaz et al., 2013; Fikes et al., 1994;
Glowania et al., 2017; Klein et al., 2020; Paulun et al., 2016; Weir et al., 1991a, 1991b).
In most cases, we see objects before we interact with them, making vision the primary
source of information to perceive and predict the physical world. Still, researchers do
not yet fully understand the cues and computations the brain relies on to estimate the
internal properties of objects (Aliaga et al., 2015; Bates et al., 2019; Battaglia et al.,
2013; Bietal., 2021, 2019; Bi and Xiao, 2016; Hamrick et al., 2016; Kawabe et al., 2015;
Paulun et al., 2017, 2015; Paulun and Fleming, 2020; Schmid and Doerschner, 2018;
Schmidt et al., 2017; Van Assen et al., 2018; Yildirim et al., 2018). Unlike an object’s
shape, size or identity, physical properties like mass or elasticity can only be inferred
from the observed behavior of the object or substance (Bi and Xiao, 2016; Kawabe et al.,
2015; Paulun et al., 2017, 2015; Paulun and Fleming, 2020; Van Assen et al., 2018), e.g.,
how a fluid flows, jelly wobbles or a ball bounces. The challenging nature of such
inferences is underlined by the fact that even though Al models have matched or
surpassed human performance in tasks like object recognition (Krizhevsky et al., 2012;
Szegedy et al., 2015) or segmentation (Kirillov et al., 2023), they still struggle with
intuitive physical reasoning (Motamed et al., 2025; Tung et al., n.d.), especially for non-
rigid objects. What makes visual inference of physical properties so difficult?

Consider a bouncing elastic object: How it bounces depends on many factors besides
its elasticity, e.g., the initial direction and force with which it was thrown. An individual
object can produce an infinite variety of trajectories, i.e., spatiotemporal paths, while
objects with different elasticities can trace very similar paths depending on other
factors, such as the object’s initial speed, height or direction of motion (Figure 1A). In
previous work(Paulun and Fleming, 2020), we have shown that observers estimate the
elasticity of bouncing cubes based on their motion trajectory. But, if there is no unique
mapping between an object’s elasticity and its trajectory, how does the brain estimate
the former from the latter?

Warren and colleagues (Warren et al., 1987) suggested that observers use the relative
height of a simulated, two-dimensional ball around a bounce (i.e. the ratio of initial and
final height) to visually judge elasticity, and the duration between two bounces when the
ball’s height is occluded. While their study elegantly isolated different cues and
demonstrated that observers are sensitive to them, it remains unclear how people judge
elasticity in more natural settings with more complex trajectories and when no single
cue is a perfect determinant of elasticity (such as relative bounce height was in their
study).

Our work addresses these two key questions: (1) How do people visually infer elasticity
in naturalistic scenes, where no single cue alone perfectly predicts elasticity? (2) How
does the brain learn to visually infer elasticity without ever having access to the ground
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truth? Although individual trajectories vary, motion trajectories of the same elasticity
will somewhat resemble each other in terms of their overall characteristic motion
features, e.g., bounce height, speed of velocity decay and trajectory length. While no
individual feature is perfectly diagnostic of elasticity, variations across different
trajectories are also not random because they result from lawful physical constraints.
By observing a number of examples, the brain could learn the dominant feature
dimensions along which bouncing objects vary and represent elastic objects within the
space of these features. A given heuristic (such as the bounce height ratio suggested by
Warren and others) could be thought of as a special instance of this, in which the brain
might identify just one feature along which trajectories are varying and thus elasticity
judgments will rely on. However, another possibility is that the brain encodes elastic
objects along multiple different features which would lead to a more robust
representation in naturalistic settings. By considering different visual features, e.g.,
number of bounces and bounce height ratio, the brain could overcome the potential
pitfalls of single heuristics.

This idea leads to several testable predictions, which we evaluate here. First, motion
features can be used to disentangle physical elasticity from other confounding factors
(such as initial speed). Second, the relation between physical elasticity and motion
features can be learned through observation alone. Third, either a single motion feature
(i.e., a heuristic) or arobust combination of several features can explain the pattern of
successes and failures in human perception. To test these assumptions, we employed
a data-driven approach. For this purpose, we simulated 100,000 short (4 sec)
trajectories of a bouncing cube in a room (Figure 1A). The cube’s elasticity (coefficient
of restitution) varied from 0.0 (not elastic) to 0.9 (very elastic) in ten steps. Importantly,
we also varied the initial position, orientation, and velocity of the cubes to gain 10,000
different trajectories for each level of elasticity. Although computer simulations are only
approximations of the real world, we validated that they reproduce several crucial
physical behaviors of bouncing objects (Paulun and Fleming, 2020). Only through
simulation can we generate sufficient number and diversity of trajectories to identify
and evaluate statistical regularities. We chose nonrigid, i.e., deformable, cubes as
stimuli, because they result in chaotic and highly variable trajectories while being
feasible in terms of the parameters to create and analyze them and are, thus, the ideal
case example to study. Next, we identified 28 candidate 3D motion features (Figure 2A-
D, Table 1) based on the physics of bouncing objects, and previously proposed cues
(Nusseck et al., 2007; Warren et al., 1987). We then determined how they statistically
relate to physical elasticity in our dataset und used PCA to determine the optimal
feature combination to predict elasticity. Our analysis revealed several competing
hypotheses of how humans visually judge elasticity using motion features, all of which
could be learned in an unsupervised fashion from observation alone. In a series of
carefully designed experiments, we selected stimuli that systematically decouple these
highly correlated alternative hypotheses and find the one that best predicts human
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83  perception on a stimulus-by-stimulus basis. To begin, we first established human

84  accuracy and consistency in elasticity perception in a random subset of our dataset as
85 abenchmarkto test out models of perception against.

86

g7  Results

88 Observers accurately infer elasticity, but make systematic errors

89 Fifteen observers rated the apparent elasticity of bouncing cubes in 150 simulated

90 animations—fifteen different trajectories for each of the ten elasticities (see Methods

91 andFigure 1A and Video S1). Although the initial speed, position, and orientation of the

92 cubesvaried randomly, yielding widely variable trajectories, observers were very

93  accurate at estimating the cube’s relative elasticity (Figure 1B). Average ratings

94 increased systematically with physical elasticity (linear regression: R>= .84, F(1, 148) =

95 748.73, p<.001). However, if observers had perfect elasticity constancy, they would

96 give videos showing the same elasticity the same ratings. This is not what we found:

97 Cubes with identical physical elasticity were perceived to have different elasticities

98 (average SD per elasticity level was 0.09 and significantly different from zero: t(9) =

99 16.40, p <.001). Importantly, the pattern of errors was not random but highly consistent
100 between different observers (r=.91 = .04; M £ SD) as well as within repeated ratings of
101 the same individual (r=.90 % .04). In fact, there was no significant difference between
102 intra- and inter-observer variability (t(14) = 2.08, p = 0.056). What causes this systematic
103  pattern of errors? If humans represent elastic objects in terms of their characteristic
104 motion features, perceptual errors should occur whenever a trajectory falls onto an

105 “atypical location” in that feature space. In the following, we test this prediction.
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106  Figure 1. Stimuli and results of Experiment 1. A) Example stimuli of lowest (e = 0.0)
107 and highest elasticity (e = 0.9), frames of the animations were overlaid for illustration
108 purposes (see also Video S1). Even though both images in each row show the same

109 cube (i.e., the same physical properties), the trajectories are different because we

110 randomly varied the initial speed, position, and orientation. B) Average elasticity ratings
111  of Experiment 1 together with a linear fit. Dots of the same color show simulations of the
112  same elasticity but varying initial parameters.

113
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114 Motion features disentangle physical elasticity from other latent

115 factors

116  We propose that the brain represents trajectories of bouncing objects using one or more
117  spatiotemporal features and infers elasticity from their systematic variation. To test this
118 hypothesis, we explored a set of motion features derived from the 3D trajectories of the
119 object. We started with 28 potential features that between them capture many aspects
120 of bounce trajectories (Table 1; see Table S1 for additional details, Figures $1-2). The
121  features were selected by: (a) consideration of the physics of ideal bouncing objects, (b)
122  proposals from previous literature (Nusseck et al., 2007; Warren et al., 1987), and (c)
123  subjective observations of the simulations. Some features describe characteristics of
124  individual bounces (e.g., average bounce height, rebound velocity) or measure the

125  coefficient of restitution in simplified, idealized settings (e.g., bounce height ratio).

126  Others capture summary statistics that integrate over time and might be usefulin

127  realistic scenes that deviate from ideal conditions (e.g., number of bounces, movement
128  duration; Figure 2A-B). Such statistics provide several different ways of measuring how
129  quickly the object dissipates kinetic energy as it bounces around. All motion features
130 are stimulus computable from observable quantities, i.e., positions and changes of

131  positions over time, and derived from first principles. We computed the motion features
132  fromthe trajectories of the cube’s center of mass (CoM) and eight corners for all

133 100,000 simulations (see Methods). Although object rotation and deformation are

134 important for a complete physical representation of the object’s motion, we do not

135 consider them here, as our previous findings show that they have a negligible effect on
136  the perceived elasticity in these stimuli (Paulun and Fleming, 2020). With this exception
137 we aimed to achieve a comprehensive characterization of the trajectories by defining a
138  diverse set of features to follow a data-driven approach and constrain our hypothesis
139  space based on the data rather than a priori assumptions.

140

Table 1. Motion features with % variance explained in physical elasticity, see Table S1.
Features< 5% were excluded from further analysis.

% Feature (acronym; unit)

82.29 Movement duration until the cube stopped moving. (movDur; sec)

78.93 Number of bounces from the floor, the ceiling and the walls. (nBounce)

78.92 Duration until the cube landed after the last bounce from any wall. (bounceDur; sec)
77.87 Number of bounces from the floor. (nBounceFloor)

67.27 Cumulative length of the motion trajectory. (trajLen; m)

52.76 Mean ratio of energy before and after a bounce. (mEnerRatio)

51.91 Mean acceleration over time. (mAccel; m/s’)

50.80 Conserved energy over time. (consEner)

45.85 Maximum ratio of energy before and after a bounce. (maxEnerRatio)
44.86 Maximum length of bounce arcs from floor (maxArcLenFloor; m)

41.80 Mean ratio of incident to rebound velocity of all bounces. (mVelRatio)
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39.42 Maximal ratio of incident to rebound velocity of all bounces. (maxVelRatio)

36.51 Maximal ratio of durations of consecutive bounces from the floor. (maxBounceDurRatio)
35.46 Maximal duration of individual bounces from the floor. (maxBounceDur; sec)

35.21 Maximal rebound velocity of bounces from every wall. (maxReboundVel; m/s)

35.13 Maximal ratio of bounce heights of two consecutive bounces from the floor.
"~ (maxBounceHtRatio)

35.10 Maximal height of bounces from the floor. (maxBounceHt; m)

30.84 Mean ratio of bounce durations of consecutive bounces from the floor. (mBounceDurRatio)
23.42 Mean ratio of bounce heights of two consecutive bounces from the floor. (mBounceHtRatio)
16.25 Maximal length of bounce arcs, i.e., trajectory between consecutive bounces. (maxArcLen; m)
6.24 Mean height of bounces from the floor. (mBounceHt; m)
5.49 Mean velocity over time. (mVel; m/s)

5.25 Mean length of bounce arcs, i.e., trajectory, between consecutive bounces. (mArcLen; m)

4.06 Mean length of bounce arcs from floor. (mArcLenFloor; m)

1.86 Difference between movement and bounce duration. (otherMotionDur; sec)
0.77 Mean duration of individual bounces from the floor. (mBounceDur; sec)
0.15 Mean height of the object over time. (mHeight; m)

0.01 Mean rebound velocity of bounces from all walls. (mReboundVel; m/s)

First, we evaluated how well each of the individual features captured the variance
across different elasticities. We found that many features varied systematically with
physical elasticity (Figure 2C-D & 3B, Table 1). The most diagnostic features (which
share the most variation with physical elasticity) were those that integrate information
over time, such as movement duration or the number of bounces. Interestingly, we
found that heuristics that were previously identified for idealized settings, e.g., related
to the height and duration of bounces, were not among the best features in our complex
scenario. We narrowed our hypothesis space by excluding features that explained <5 %
of the variance from further analysis. We found that the remaining 23 features were
significantly correlated with one another across the set of 100,000 trajectories (mean
absolute correlation, M = 0.48; see Figure S3A-B). To identify independent dimensions
of variation, we applied principal component analysis (PCA) to the normalized and
equalized motion features of all trajectories. Representing the trajectories in the space
of the first two PCs reveals that physical elasticity varies largely along the first
dimension (Figure 2E). Indeed, we found that ground truth elasticity and the first PC
share 82.83% of their variance. In other words, physical elasticity emerges as the latent
variable driving most variance in the feature representation of all trajectories. Although
adding further PCs necessarily increases the explained variance of the dataset (Figure
S3C), adding more PCs to a multiple linear regression model fitted to physical elasticity
does not increase the shared variance by much (with all PCs: 86.25%). Moreover, while
PC1 robustly predicts physical elasticity, it is mostly independent of the other latent
parameters we used to initialize our simulations (e.g., velocity; all < 1.0%, Figure S3D).
Thus, this linear combination of motion features (see Figure S4 for feature loadings)
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165 successfully disentangles physical elasticity from other scene factors that contribute to
166  the raw physical trajectory of bouncing objects. Notably, this feature weighting is not the
167  result of afitting process but emerges naturally and without supervision from the

168  statistics across many examples. This underlines the potential of motion features to

169 form a statistical appearance model of bouncing objects in a completely data-driven
170 fashion. In the following, we test whether PC1 can explain the perceptual patterns found
171  in Experiment 1 (‘multi-feature model’). Importantly, applying a PCA to the raw motion
172  trajectories (Figure 2F) does not yield comparable elasticity estimates—highlighting the
173  crucialrole of appearance features.
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174  Figure 2. Spatiotemporal motion features of bouncing objects. A) Example trajectory
175 ofalow (e =0.0) and high (e = 0.9) elastic cube, each dot represents one frame; color
176  gradient represents movement duration. B) The same two trajectories, red dots

177  represent bounces off the floor. C) Distribution of movement durations in the set of

178 100,000 trajectories, true elasticity is color-coded. D) Distribution of “number of

179  bounces off the floor” in the set of 100,000 stimuli. E) All 100,000 simulations in the

180 space of the first two PCs resulting from a PCA on the motion features (“feature space”).
181  Physical elasticity (color-coded) seems to vary mainly along the first PC, which explains
182  mostofthe variance, see Figure S3C-D. F) 100,000 trajectories in the space of the first
183  two PCs resulting from a PCA on the raw trajectories. Rather than physical elasticity

184  (color-coded), the PCs seem to be related to the position of the cube in 3D space, see
185  Figure S3E-F. Note that although the initial position of the cube is uniformly sampled, its
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186 3D position over time is biased due to gravity. This results in a tilted square in the 2D
187  representation of the PCs.

188

189  Optimal motion features predict elasticity perception

190 Having established that motion features are highly diagnostic of physical elasticity and
191 that their relation to elasticity can be learned without supervision from observation

192  alone, our analysis revealed several strong hypotheses for how the brain could visually
193 infer elasticity. Next, we sought to answer the key question whether the human brain
194 relies on a single motion feature (i.e., a heuristic) when estimating elasticity or instead
195 combines different visual features to a potentially more robust estimate, similar to PC1.
196 Note that besides PC1, we also tested a more traditional precision-based maximum-
197  likelihood estimation (MLE) model of cue combination in which the features are

198 weighted according to their reliability, i.e., their weights are inversely proportional to

199 theirvariance. The MLE model was overall highly correlated with the PC1 model (r=.98
200 overthe 100k simulations) but performed slightly worse in predicting elasticity (physical
201  and perceived, see Figure S5). We therefore considered PC1 as the stronger cue

202 combination model to test against individual heuristics.

203 Interestingly, we found that motion features that turned out to be good, i.e., diagnostic,
204  heuristics of physical elasticity, were also the best to predict perceived elasticity in

205 experiment 1 (Figure 3B). Strikingly, movement duration, the best feature for predicting
206  physical elasticity, was also the best to predict perceived elasticity (R =.91, F(1, 148) =
207  1515.1, p<.001, Figure 3A-B). On a stimulus-by-stimulus basis, movement duration
208 was a better predictor of human ratings than physical elasticity (evidence ratio:

209  Wmovwou/Wenysics = 1.51€+20). Can a combination of features outperform this? We find that
210 amulti-feature model, i.e., PC1, is a very good predictor of perceived elasticity in

211  Experiment 1 (linear regression: R? = .89, F(1, 148) = 1210.5, p <.001, see Figure 3B-C).
212  Thisis impressive given that the feature weighting was derived from observing the

213  covariation of features in a large data set rather than a fitting procedure to the

214  perceptual (or any) data. PC1 predicts perception better than the ground truth does

215  (evidence ratio: WreatureModel/ Wenysics = 3.38e+13), but worse than movement duration

216  (evidence ratio: Wmovour/WreatureModel = 4.46€+06; Wmovour® 1). However, the predictions of
217 both models are strongly correlated (r = .95, p <.001, in the complete data set). In

218  Experiment 2 we therefore systematically decouple their predictions.
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219

220  Figure 3. Prediction of perceived elasticity by different compteting models. A)

221  Perceived elasticity (in Experiment 1) as a function of the prediction made by the

222  statistically optimal feature: movement duration. B) Explained variance in terms of

223  perceived elasticity (in Experiment 1) as a function of explained variance of physical

224  elasticity (in the data set of 100,000) for individual features (blue) and the multi-feature
225 model (PC1, red). The noise ceiling shows the average explained variance between

226  individual subjects and the average subject (+ 95%-Cl). C) Rated elasticity from

227  Experiment 1 as a function of the prediction made by the feature combination from PC1,
228 i.e., the multi-feature model.

229

230 When observing complete motion trajectories people use movement

231 duration as a heuristic to elasticity

232  The aim of Experiment 2 was threefold: First, we systematically decoupled the

233  predictions of the multi-feature model from those of the movement duration heuristic to
234  bring both models into conflict. Second, in order to test whether any of the other

235 features are—individually—a better predictor of perceived elasticity, we systematically
236 decoupled all other features from the multi-feature model. Since itis impossible to

237  isolate each of the 23 features from all other features one by one, we decoupled each
238  feature from the weighted combination of all features to test its causal contribution to
239  elasticity perception. In doing so, we are able to overcome the purely correlational

240 analysis reported so far and experimentally tests 24 competing hypotheses at once,

241  thereby going beyond previous studies (Bi et al., 2019; Kawabe et al., 2015; Paulun et
242 al., 2017, 2015; Schmid and Doerschner, 2018; Schmidt et al., 2017; Van Assen et al.,
243  2018). Third, because any good model of elasticity perception should be able to predict
244  the pattern of errors on a stimulus-by-stimulus basis, all stimuli in this experiment had
245 the same physical elasticity, i.e., all perceptual differences are illusory. This provides an
246  even more stringent test of our 24 competing models.

247  For this purpose, we simulated another 90,000 motion trajectories of the cube with
248 medium elasticity (e = 0.5). From the total of 100,000 simulations of medium elasticity,
249  we selected 23 sets of stimuli (one for each of the candidate motion features) for which
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250 individual feature and multi-feature model predictions were essentially uncorrelated (||
251 <.05; see Methods and Figure S6 for more details). A new group of 30 participants

252  judged the elasticity of these stimuli. Note that this rigorous stimulus selection process
253  risks diminishing the very effects we seek to find: We first narrow the range of features
254 by keeping elasticity constant and then select stimuli that, by definition, include outliers
255  with a low correlation between a given feature and PC1.

256  Although these careful steps may have limited our statistical power, Experiment 2

257  provided clear results. For each feature, Figure 4A shows the correlation of perceived
258 elasticity in the specific stimulus set (chosen for that feature) with the feature prediction
259  (x-axis) and the multi-feature model prediction (y-axis). Seventeen features show a

260  significantly lower correlation with perception than the multi-feature model (p <.0022,
261  Bonferroni corrected). Only for one feature—movement duration—does the correlation
262  with perception (r = .45) significantly exceed the multi-feature model (r=.07, p <.0022).
263  In other words, when brought directly into conflict, movement duration can explain

264  perceived elasticity better than a weighted feature combination. Thus, the high

265  correlation between the multi-feature model and perception in Experiment 1 is

266  presumably mediated by the contribution of movement duration (which has the third
267 highest loading of all features to PC1). Is movement duration also driving the high

268  correlations between the multi-feature model and perception in the other stimulus sets
269  of Experiment 27 Figure S6E shows the partial correlations between perception and
270  single features vs. perception and multi-feature model prediction when controlling for
271  the effect of movement duration. The correlations between perception and multi-

272  feature model (r=.56 =.14 (M = SD)) decrease significantly when controlling for

273  movementduration (r=.12+.11; t(21) =12.97, p <.001), indicating that movement

274  duration is indeed the driving factor. Across all stimuli, movement duration was—

275 again—the best predictor of perceived elasticity (R?=.78, F(1, 223) = 787.61, p <.001,
276  see also Figure 4B and S5D). Thus, the longer an object moved in the scene, the more
277  elastic it appeared. Experiment 2 showed that this relation holds true even if physical
278  elasticity is constant, leading to a powerful perceptual illusion. Video S2 demonstrates
279 these large, systematic, and robust illusory differences in apparent elasticity.

280
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Figure 4. Results of the decorrelation experiment. A) Correlation of the pooled
perceptual ratings with the multi-feature model (y-axis) and the individual features (x-
axis). Each dot represents the correlations for one set of stimuli that were specifically
selected to decouple the prediction of one feature from the model. Features that fall
below the diagonal (light blue shaded area) exceed the model, i.e., their predictions
correlate more strongly with perception than the model does. Filled dots indicate a
significant difference between the two correlation coefficients. Error bars show 95%
confidence intervals. Please note, that the correlation coefficients are lower than in
Experiment 1 because the data is pooled across participants (instead of averaged) to get
a more reliable estimate from the small number of stimuli in each set. For the noise
ceiling, we calculated for each stimulus set how much the pooled responses correlate
with the average response. The noise ceiling shows the mean (+ 95 % - Cl) across
features. B) Average elasticity ratings for all stimuli of Experiment 2 as a function of
movement duration together with a linear fit. Elasticity ratings clearly increase with an
increase in movement duration. All stimuli had the same physical elasticity of 0.5 (grey
line). Thus, all perceived differences in elasticity between stimuli are illusory. See Video
S2 and Figure S6.

Observers flexibly switch to another heuristic when movement

duration is unobservable

Our everyday experience suggests that we are able to judge an object's elasticity even
without observing for how long the object moves, e.g., if someone catches it before it
comes to rest. To study systematically whether and how well people can estimate
elasticity when this one cue is not available, we truncated a subset of the videos from
Experiment 1 to exactly 1 second and presented these to a new group of 15 observers in
Experiment 3, see Video S3. In these videos it was not possible to observe movement
duration. Yet, we found that the average elasticity ratings increased systematically with
physical elasticity (linear regression: R?=.73, F(1, 78) = 215.41, p < .001, see Figure
S7A) and showed a near-perfect correlation (r=.97, p <.001) with ratings for the full
movies (Exp. 1; see Figure 5A), although the consistency between observers was
moderately lower here (r=.80+ .16, M = SD) than in Experiment 1 (r=.91 + .04; £(28) = -
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312 2.63,p=.05). How do observers infer elasticity when movement duration cannot be
313 observed? Do they rely on a different heuristic?

314  Truncating the videos altered most feature values, not just movement duration. Figure
315 5B shows how well the multi-feature model and the individual features can predict

316 physical as well as perceived elasticity in 1-sec movies. The multi-feature model was
317 the best at explaining both physics and perception and again better explains perception
318  than ground truth physics (R?=.77, F(1, 78) = 260.27, p < .001; evidence ratio:

319 WreatureModel/ Wenysics = 296.05; see also Figure S7B). Several individual features, particularly
320 those measuring the presence of large bounces in the trajectory (such as

321  maxArcLenFloor or maxBounceHt), also capture a large proportion of the variance in
322  perceived elasticity. To disentangle these competing, but correlated hypotheses, we
323  conducted Experiment 4 following the same logic as in Experiment 2: From the dataset
324  of 100,000 cubes of medium elasticity, we first identified the simulations that had a

325 movement duration of at least 1 sec. For this subset, we calculated the motion features
326  forthe first second and then selected 22 sets of stimuli (one set for each feature except
327 movement duration) in which the prediction of that feature individually was

328 uncorrelated with the prediction of the multi-feature model. A new group of 30

329 observers estimated elasticity in these 1-sec stimuli.

330 Again, we found that one of the most diagnostic features—maximum bounce height—
331 showed a significantly higher correlation with perception than the multi-feature model (r
332 =.54>r=.25,p<.0023, see Figure 5C) when brought directly into conflict, and that

333  was the best predictor of perceived elasticity across all stimuli in Experiment 4 (R? = .74,
334 F(1,197)=565.56, p <.001, see Figure 5D and S6C). Thus, the higher the largest bounce
335 was, the more elastic the cube appeared even if the true elasticity was equal (see Video
336  S4). There was only one other feature—bounce duration—for which the correlation

337 between feature and perception was larger than the correlation between multi-feature
338 model and perception (r=.36>r=.10, p <.0023). However, bounce duration did not

339 vary much in the stimulus set, because in most simulations the cube would have

340 bounced for longer than 1 second had the movie not been truncated (see Figure S7E).
341 Therefore, bounce duration was only a diagnostic feature when it was notably shorter
342 than one second. For most (12/22) features, we found that the multi-feature model

343  predicted the data better than the individual features (p <.0023, Bonferroni corrected).
344  Akin to the results of Experiment 2, these high correlations seemed to be driven by the
345 bestsingle feature, maximum bounce height (see Figure S7D). More precisely, the

346  correlations between perception and multi-feature model (r=.49 = .16 (M = SD))

347  decreased significantly when controlling for maximum bounce height (r=.23 +=.09; t(21)
348 =6.65,p<.001).

349 Insum, Experiment 4 showed that observers reported robust perceptual differences
350 between truncated stimuli even though all had the same physical elasticity. Perceived
351 elasticity was best explained by one of the most predictive features, maximum bounce
352  height. Intuitively this makes sense, as the maximal bounce height is easy to compute
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353  (i.e., requires only one position) and it occurs within the first second in most trajectories
354  (94.1%, see Figure S7F). Taken together, this suggests that if unable to fully observe an
355 object’s movement until it comes to a standstill, we instead form an impression of its
356 elasticity based on the highest of the bounces that it makes.
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358  Figure 5. Results of Experiments 3 and 4 with truncated movies. A) Average

359  perceived elasticity in 1-sec movie clips (Exp. 3) as a function of the movement duration
360 ofthe apparent elasticity in full movies of the same stimuli. Physical elasticity is color-
361 coded. B) Explained variance in terms of perceived elasticity (in Experiment 3) as a

362  function of explained variance of physical elasticity in 1-sec movies (in the data set of
363  100,000) for individual features (blue), the multi-feature model (red). For a legend of

364 individual features see Figure 2G. The noise ceiling shows the average explained

365 variance between individual subjects and the average subject (£ 95%-Cl). C) Correlation
366 ofthe pooled perceptual ratings with the multi-feature model (y-axis) and the individual
367 features (x-axis). Each dot represents the correlations for one set of stimuli that were
368  specifically selected to decouple the prediction of one feature from the model. Features
369 thatfall below the diagonal (light blue shaded area) exceed the model, i.e., their

370 predictions correlate more strongly with perception than the model does. Filled dots
371 indicate a significant difference between the two correlation coefficients. Error bars

372 show 95% confidence intervals. For the noise ceiling, we calculated for each stimulus
373 sethow much the pooled responses correlate with the average response. The noise

374  ceiling shows the mean (£ 95 % - Cl) across features. D) Average elasticity ratings of

375  Experiment 4 as a function of the maximum bounce height together with a linear fit.
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376  Elasticity ratings clearly increase with an increase in maximum bounce height. All
377  stimuli had the same physical elasticity of 0.5 (grey line). See Videos S3 and S4, and
378  Figure S7.

379 Discussion

380 Here we propose that when visually judging the physical properties of objects and

381 materials, people often represent them in terms of their typical appearance—i.e., in
382 terms of their typical mid-level spatiotemporal features. Specifically, our results

383  suggest that when asked to judge the elasticity of a bouncing object, observers judge
384 how long the object moves. If the motion duration is cut short, i.e., it cannot be

385 observed, observers instead rely on the maximal bounce height to judge elasticity. This
386 implies a flexible and computationally efficient strategy.

387  While this study is not the first to suggest a role of mid-level features in the estimation of
388  physical properties (Bi et al., 2019; Bi and Xiao, 2016; Kawabe et al., 2015; Kawabe and
389 Nishida, 2016; Paulun et al., 2017, 2015; Schmid and Doerschner, 2018; Schmidt et al.,
390 2017;Van Assen et al., 2018), it overcomes three critical limitations of previous work.
391  First, we assess the statistical relations between a diverse set of potential visual

392 features and physical elasticity in a large dataset and thereby show how—in principle—
393  observing the variations of motion features in many examples spontaneously reveal

394  elasticity and establish which features (or their combination) are best at doing so.

395 Second, to the best of our knowledge, no study has yet manipulated the proposed visual
396 cuesto physical properties in naturalistic stimuli. Here, we achieved such manipulation
397 by using a large dataset to identify stimuli that decouple the inherently correlated

398 predictions of different models. Third, we identified illusory stimuli that decouple

399 feature predictions from ground truth physics. Thus, we not only predict the good overall
400 performance of observers in elasticity estimation but, critically, also their specific

401 perceptual errors on a stimulus-by-stimulus basis. Our findings have implications on
402  boththeoretical and methodological levels.

403 Learning. We have previously hypothesized that by observing the outside world and its
404 inherent statistical relations (Fleming, 2014; Fleming and Storrs, 2019), the brain can
405 learn—in an unsupervised manner—many dimensions along which objects in our

406  environment vary. The statistical appearance model proposed here is notintended as a
407 model of this learning process, but rather a proof of principle about the learnability of
408 the cues and the impact that such unsupervised statistical observation approaches
409 have on perception. We found that by observing various motion features of bouncing
410 cubes, elasticity emerges spontaneously as the main dimension of variation. The

411 motion features themselves were not the result of learning from the stimulus set but
412  instead were explicit operationalizations of our hypotheses. This approach allowed

413  testing the contribution of a large, yet testable number of interpretable motion features
414  and their combination. Would similar features emerge from applying unsupervised or
415  self-supervised learning algorithms? It would be interesting to investigate this question
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416  within different frameworks, from deep learning to program learning or simulation-

417  based learning. For example, might the same heuristics be derived within a mental

418 physics simulation model? How would the latent feature space of an (unsupervised)
419 deep learning model compare to the motion features identified here? However, it would
420 be practically impossible to test the individual contribution of the thousands of features
421 inthe trained network to perceived elasticity. Yet, here, it is precisely this decoupling of
422 competing hypotheses that ultimately enabled us to predict human perception on a

423  stimulus-by-stimulus basis.

424  Mid-level features. One of our key findings is that when asked to estimate the elasticity
425 of bouncing objects, observers judge the movement duration or the maximal bounce
426  heightin case the duration is visibly cut short. Crucially, this implies that the brain does
427  represent multiple features of bouncing objects at a time but does not combine them in
428 the sense of classic cue combination (Ernst and Banks, 2002) to estimate the latent

429  parameter (elasticity). If the brain represents bouncing objects in terms of their visual
430 motion features, as our results suggest, ‘estimating elasticity’ means determining the
431 relative position of the observed object on the feature manifold. Across four

432  experiments, we found that observers base their elasticity estimates on only 2-3 visual
433  features. Why would the brain rely on these and not on other features? Presumably, the
434  most effective features are both salient and inexpensive to compute. Movement

435 duration and maximum bounce height both capture important events in the observed
436 motion, i.e., the largest bounce and the end of the motion. It is not trivial to determine
437  the computational costs of different features. Yet, at a minimal level, it seems plausible
438 to assume that single measures, e.g., height or duration, will be computationally

439 cheaper than their derivatives or ratios. In that sense, movement duration and

440 maximum bounce height, are among the computationally simplest features we tested.
441  Duration and spatial distance are quantities the visual system can estimate reliably and
442  accurately (Buhusi and Meck, 2005; Eagleman, 2008; Eagleman et al., 2005; Epstein and
443  Rogers, 1995).

444  Even though we found strong evidence that humans base their elasticity estimates

445  mainly on two motion features, some other features may play an importantrole in

446  identifying the stimulus as a bouncing object in the first place. A key assumption of our
447  modelis that the observed motion is due to a semi-elastic object bouncing in an

448  environment, as opposed to some other cause (e.g., animate motion (Scholl and

449  Tremoulet, 2000), fluid flow (Kawabe et al., 2015; Morgenstern and Kersten, 2017; Van
450 Assenetal.,, 2018)). If applied to other trajectories the resulting ‘elasticity estimate’
451 would be meaningless, e.g., for a feather gliding in the wind or a driving car. An

452  important line of future research is to investigate the cues underlying the recognition
453  process through which we identify the stimulus as a bouncing object in the first place.

454  The motion features we tested here are stimulus-computable, yet they assume a
455  perfect representation of the object’s trajectory. As such, they oversimplify the input
456  available to elasticity-estimating processes in the biological brain. For example,
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457  humans have a more accurate representation of image-plane motions than motion in
458  depth (Murdison et al., 2019; Welchman et al., 2008), and may not be equally sensitive
459  to all velocities in these displays. Thus, to transform the heuristic model into a truly

460 image-computable one, future work will also need to incorporate aspects of low-level
461  vision, including object segmentation. Yet, we reasoned that important insights into the
462  estimation of material properties can still be gained even without fully modeling all

463  preceding processing stages.

464  Generalization. Deformable cubical objects produce diverse and complex trajectories.
465 We have shown that visual motion features generalize across large variations caused by
466  several independent factors. Movement duration and maximum bounce height are likely
467  to generalize to some extent across other scenes and objects. For example, if the object
468 had a different shape or if it interacted with other objects in a different space, higher

469  elasticity objects would still tend to move longer and bounce higher. Participants

470 presumably had little experience with bouncing non-rigid cubes prior to our

471  experiments. Yet, they were broadly able to judge elasticity reliably, suggesting they

472  could generalize from previous experience with other scenes and objects. In an

473  experimental setting, it would be possible to break the relation between motion features
474  and elasticity. For example, if the floor was completely inelastic, like sand, no object
475  would rebound. Itis, however, unlikely that human observers would be able to estimate
476  the objects’ elasticity in these cases. Thus, although motion features would not capture
477  physical elasticity, they might still be reliable predictors of perceived elasticity. Because
478  our modelis stimulus computable (based on the true or estimated 3D position), such
479  hypotheses can be easily tested in future research.

480 Simulation vs. heuristics. A current topic of active discussion is the extent to which
481 physical perception and reasoning proceed through sophisticated but computationally
482  costly internal simulations (Bates et al., 2019; Battaglia et al., 2013; Hamrick et al.,

483  2016; Wu et al., 2015; Yildirim et al., 2018) or cheaper but potentially less accurate

484  heuristics (Kubricht et al., 2017; Ludwin-Peery et al., 2021; Paulun et al., 2017, 2015).
485  How do our results fit into this theoretical spectrum? Representing objects and

486  materials in terms of their appearance features entails an understanding of the

487  observable consequences of natural variations between objects, e.g., the ways in which
488  elastic objects bounce. Yet, the resulting estimation strategy appears like a classic

489  heuristic, i.e., a simple but sufficient rule of thumb such as “the longer it moves, the
490 more elasticitis”. In fact, our results could provide an explanation of how the brain

491  derives such heuristics from observation alone and of how it switches from using one
492  feature to another (i.e. when there is no variation along the first feature dimension). This
493 does not mean that observers cannot simulate possible future behaviors of objects,
494  such as how the trajectory of a bouncing cube continues, just that they may not choose
495 to do sowhen simpler yet near-optimal heuristics are available. This interpretation is
496  consistent with previous work by Battaglia and colleagues (Battaglia et al., 2013), who
497  found that when a simple heuristic is a more efficient and optimal way to make a
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prediction (e.g., “How far will the blocks fall when the block tower falls over?”,
observers tend to use such heuristics (e.g., height of the tower) rather than simulation.
Thus, we suggest that observers can draw on different forms of computation, but do so
taking into consideration the relative costs and demands of the specific task at hand—
an example of bounded or computational rationality (Gershman et al., 2015; Gigerenzer
and Todd, 2001). For example, when asked to infer a single parameter (e.g., elasticity)
from an observed trajectory, time- and energy-consuming simulations represent a poor
allocation of resources when a simple read-out from the feature estimation provides
high accuracy. However, visual features are likely too inaccurate when making time- or
location-critical predictions about an object’s future trajectory (Diaz et al., 2013; Mann
et al., 2019; Mrowca et al., 2018). Under these conditions, the additional costs
associated with internal simulation may pay off. Similarly, when no standard heuristics
apply, observers may use simulation even for physical inference of material properties,
such as mass, as shown by Hamrick et al (Hamrick et al., 2016). Future studies should
further investigate the different cognitive strategies humans use under various
circumstances as well as the metacognitive process that switches between different
strategies.

Conclusion

Visually estimating physical object properties is a crucial, yet computationally
challenging task. The visual input is highly ambiguous because an object’s behavior
depends on humerous entangled factors. Estimating the elasticity of a bouncing object
requires disentangling the different causal contributions of elasticity, initial speed,
position, and other factors. Using a ‘big data’ approach, we showed that representing
trajectories in terms of their characteristic spatiotemporal features—such as the
maximum bounce height or movement duration—yields elasticity estimates that are
inexpensive to compute and robust to external factors. Our experiments suggest that
the brain estimates elasticity by flexibly switching between a few single-feature
heuristics based the information available in the stimuli. Our model explains both the
broad successes and the systematic failures of human elasticity perception and
correctly predicts a novel illusion in which appearance features maximally diverge from
ground truth. Observers can draw on multiple cues and computations, and appear to
select strategies with lower computational costs, i.e., computationally rationally.
Similar principles might underlie the visual perception of other physical objects
properties, such as mass or softness.

17


https://doi.org/10.1101/2023.03.24.534031
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.24.534031; this version posted October 11, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

s3s METHODS

537 Experimental model and study participant detail

538 Ninety undergraduate students (68 females) from the University of Giessen participated
539 inthe experiments (15in Exp. 1 and 3, 30 in Exp. 2 and 4). Their average age was 24

540 years (SD = 3.5 years). No person participated in more than one experiment. All

541  participants were naive with regard to the aims of the study and they gave written

542  informed consent before the experiment. Participants were compensated with 8€/h.
543  The experimental procedure was in accordance with the declaration of Helsinki and

544  approved by the local ethics committee (LEK FB0O6) at Giessen University.

545 Physical simulations

546  The dataset was created with the Caronte physics engine of RealFlow 2014

547  (V.8.1.2.0192; Next Limit Technologies, Madrid Spain), a 3D dynamic simulation

548  software. The dataset contains 100,000 simulations of a cubical object (0.1 m?)

549  bouncingin a cubical room (1.0 m3). We chose a cube as the target object because it
550 produces a greater variety of trajectories than, for example, a sphere because the

551 rebound direction depends not only on the direction of the object but also its

552  orientation. We have previously shown that human observers can judge the elasticity of
553 abouncing cube in such a scene (Paulun and Fleming, 2020). We varied the cube’s

554  elasticity in ten equal steps from 0.0 to 0.9. This value corresponds to the coefficient of
555  restitution—the proportion of energy the cube retains upon collision. We created 10,000
556  simulations for each level of elasticity by randomly varying its initial velocity,

557 orientation, and position, while keeping all other parameters constant. We simulated
558 121 frames at 30 fps of the cube moving through the room under gravity. In addition to
559 the original dataset, we simulated another 90,000 trajectories of just one elasticity (0.5).
560 As before, initial velocity, orientation, and position varied randomly. We used the 90,000
561 simulations + 10,000 simulations of the medium elasticity from the original dataset to
562  search for stimuli in Experiments 2 and 4. For all 190,000 simulations, we provide 3D
563  positions of the cube’s center of mass (CoM) and its eight corners across all 121 frames
564  [LINKWILL BE INCLUDED UPON ACCEPTANCE].

565 Motion features and multi-feature model

566  We calculated 28 motion features based on the CoM and the eight corners of the cube
567 forall 100,000 simulations. The end of the cube’s movement was defined as the point at
568  whichits velocity dropped below 0.003 m/s, since simulated velocity never reaches

569  zero. All other features were computed only for the frames in which the cube was

570 moving. The exact definition of all 28 motion features is described in Table $1 and

571  Figures S1-2. Next, we normalized every motion feature to a range between [0.0, 1.0]
572  and equalized their histograms. We determined the R2-score, the shared variance with
573  physical elasticity, for each feature and excluded features from further analysis if they
574  explained <5% of the variance. We performed a principal component analysis (PCA)
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575 with the remaining 23 features. The resulting scores of the first principal component
576  (PC) were used to predict perceived elasticity, see Figure S3.

577

578  Stimuli

579 Experiment 1 contained 15 stimuli per level of elasticity, randomly selected from the

580 original dataset (i.e., 150 stimuli). For Experiment 2 we selected 225 stimuli that

581  systematically decoupled the predictions of each individual feature from both the multi-
582  feature model and physical elasticity. Specifically, for each of the 23 features we chose
583  ten stimuli from the medium elasticity dataset for which the predictions of the individual
584  feature and the multi-feature model were uncorrelated (|r] < 0.05), while spanning the
585 widest possible range on both dimensions (Figure S6A). In Experiments 1 and 2, each
586  stimulus was presented for the full duration of the cube’s movement. In Experiments 3
587 and 4, only the first second of each stimulus was presented (and no stimulus had a

588 movement duration that was shorter than 1 sec). For Experiment 3, we used a random
589  subset of eight stimuli per elasticity level from the stimuli of Experiment 1 (i.e., 80

590 stimuli). For Experiment 4, we selected 213 stimuli that systematically decoupled the
591 predictions of each individual feature (except movement duration) from both the

592  prediction of the multi-feature model and physical elasticity. The selection procedure
593 wasthe same as in Experiment 2, but all stimuli were truncated to exactly one second.

594 The simulations selected as stimuli were rendered using RealFlow’s built-in Maxwell
595 renderer. The room was rendered with a white matte material, and the target object was
596 rendered with a blue opaque material. The scene was illuminated brightly using an HDR
597 map through the transparent ceiling. Stimuli of all experiments are available for

598 download at [LINKWILL BE INCLUDED UPON ACCEPTANCE].

599

600 Setup

601  All experiments were conducted using the same setup. Stimuli were presented on an
602  Eizo LCD monitor (ColorEdge CG277; resolution: 2560 x 1440 pixels; refresh rate: 60 Hz).
603  Participants used a chin rest to maintain a constant viewing distance of 54 cm. At this
604 distance, the stimuli had a visual angle of 19.6 x 19.6 degrees.

605 Procedure

606  All experiments followed the same basic procedure. Participants were instructed to

607  watch a short movie of an object and rate its elasticity. Elasticity was defined to them as
608 the property that distinguishes for example a bouncy ball from a hacky sack. On each
609 trial, one stimulus was presented in a loop until a response was given. Below the movie,
610 a horizontal rating bar was displayed, ranging from ‘not elastic’ to ‘very elastic’.

611 Participants adjusted a slider along the bar to indicate their rating. Each stimulus was
612 repeated three times over the course of the experiment, and all stimuli were presented
613 inrandom order. Before the main experiment, participants completed ten practice
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614 trials, one for each level of elasticity (unknown to participants) to provide an impression
615  of the stimulus range without biasing their response scale. The experimental code was
616  written in Matlab 2018a using Psychtoolbox 3 (Brainard, 1997; Kleiner et al., 2007; Pelli,
617 1997) and is available here [LINK WILL BE INCLUDED UPON ACCEPTANCE].

618 Analysis

619 In all experiments, we averaged across repetitions to obtain one rating per stimulus

620 from every participant. For Experiments 1 and 3, we calculated the average across

621 participants, as well as inter- and intra-observer variability (standard deviation). We

622  fitted linear regression models to the average elasticity ratings using either physical

623  elasticity, the multi-feature model, or each of the individual feature as predictors.

624  Models were compared using AIC values, specifically their Akaike weights and evidence
625 ratios (Burnham and Anderson, 2004). Akaike weights represent the probability that a
626 given modelis the best among those tested, while evidence ratios indicate the relative
627 likelihood of two competing models given the data. For Experiments 2 and 4, we pooled
628 the data across participants. For each feature’s stimulus set, we computed correlations
629 between pooled ratings and both the corresponding feature prediction and the multi-
630 feature model prediction. Pooling (rather than averaging) allowed more reliable

631 estimation of the correlation coefficients based on full trial counts rather than just 10
632  averages. For each feature, the resulting correlation coefficients were compared using a
633  two-tailed significance test for dependent groups with one overlapping variable (Olkin,
634 1967). Additionally, we computed the explained variance in perceived elasticity

635 (averaged across participants) for each feature and the model across all stimuli,

636 independent of the stimulus set.

637

63  Supplemental information

639 Document S1. Figures S1-S6 and Table S1.

640 Video S1. Example stimuli from Experiment 1 (elasticity increases from left to right, full
641 length movies), related to Figure 1.

642 Video S2. Elasticity Illusion from Experiment 2 (movement duration increases form left
643  toright, constant elasticity (e = 0.5)), related to Figure 4.

644  Video S3. Example stimuli from Experiment 3 (elasticity increases from left to right,

645 movies truncated to 1 second), related to Figure 5.

646 Video S4. Elasticity Illusion from Experiment 4 (maximum bounce height increases from
647  lefttoright, constant elasticity (e = 0.5)), related to Figure 5.

648
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