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Abstract 
A key to interacting with the physical world is the ability to infer object properties, such 
as elasticity, from vision, allowing us to anticipate an object’s behavior in advance. This 
kind of perceptual inference challenges current AI systems—highlighting the complexity 
of the underlying computations. How does the human brain solve this task? Here, we 
propose a resource-rational model based on learned statistics of object motion to 
explain how humans judge elasticity. We created 100,000 physics-based simulations of 
bouncing objects with different elasticities and found that even tiny changes in initial 
conditions (e.g., orientation) yield starkly different trajectories. Yet, across these 
simulations, we identified 23 motion features that capture natural variations in 
elasticity. Although a weighted combination of these features reliably predicts physical 
elasticity, surprisingly, humans do not seem to employ cue combination when judging 
elasticity. Instead, we found that observers flexibly switch between different cues, i.e., 
heuristics. A series of experiments designed to carefully tease apart several competing 
heuristics, suggests that observers switch between different computationally efficient 
yet highly informative heuristics depending on the information available in the stimulus. 
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Introduction 1 

To grasp, catch, stack, or avoid objects, we need to infer their physical properties such 2 
as elasticity, mass, compliance, or friction (Diaz et al., 2013; Fikes et al., 1994; 3 
Glowania et al., 2017; Klein et al., 2020; Paulun et al., 2016; Weir et al., 1991a, 1991b). 4 
In most cases, we see objects before we interact with them, making vision the primary 5 
source of information to perceive and predict the physical world. Still, researchers do 6 
not yet fully understand the cues and computations the brain relies on to estimate the 7 
internal properties of objects (Aliaga et al., 2015; Bates et al., 2019; Battaglia et al., 8 
2013; Bi et al., 2021, 2019; Bi and Xiao, 2016; Hamrick et al., 2016; Kawabe et al., 2015; 9 
Paulun et al., 2017, 2015; Paulun and Fleming, 2020; Schmid and Doerschner, 2018; 10 
Schmidt et al., 2017; Van Assen et al., 2018; Yildirim et al., 2018). Unlike an object’s 11 
shape, size or identity, physical properties like mass or elasticity can only be inferred 12 
from the observed behavior of the object or substance (Bi and Xiao, 2016; Kawabe et al., 13 
2015; Paulun et al., 2017, 2015; Paulun and Fleming, 2020; Van Assen et al., 2018), e.g., 14 
how a fluid flows, jelly wobbles or a ball bounces. The challenging nature of such 15 
inferences is underlined by the fact that even though AI models have matched or 16 
surpassed human performance in tasks like object recognition (Krizhevsky et al., 2012; 17 
Szegedy et al., 2015) or segmentation (Kirillov et al., 2023), they still struggle with 18 
intuitive physical reasoning (Motamed et al., 2025; Tung et al., n.d.), especially for non-19 
rigid objects. What makes visual inference of physical properties so difficult? 20 

Consider a bouncing elastic object: How it bounces depends on many factors besides 21 
its elasticity, e.g., the initial direction and force with which it was thrown. An individual 22 
object can produce an infinite variety of trajectories, i.e., spatiotemporal paths, while 23 
objects with different elasticities can trace very similar paths depending on other 24 
factors, such as the object’s initial speed, height or direction of motion (Figure 1A). In 25 
previous work(Paulun and Fleming, 2020), we have shown that observers estimate the 26 
elasticity of bouncing cubes based on their motion trajectory. But, if there is no unique 27 
mapping between an object’s elasticity and its trajectory, how does the brain estimate 28 
the former from the latter? 29 

Warren and colleagues (Warren et al., 1987) suggested that observers use the relative 30 
height of a simulated, two-dimensional ball around a bounce (i.e. the ratio of initial and 31 
final height) to visually judge elasticity, and the duration between two bounces when the 32 
ball’s height is occluded. While their study elegantly isolated different cues and 33 
demonstrated that observers are sensitive to them, it remains unclear how people judge 34 
elasticity in more natural settings with more complex trajectories and when no single 35 
cue is a perfect determinant of elasticity (such as relative bounce height was in their 36 
study).  37 

Our work addresses these two key questions: (1) How do people visually infer elasticity 38 
in naturalistic scenes, where no single cue alone perfectly predicts elasticity? (2) How 39 
does the brain learn to visually infer elasticity without ever having access to the ground 40 
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truth? Although individual trajectories vary, motion trajectories of the same elasticity 41 
will somewhat resemble each other in terms of their overall characteristic motion 42 
features, e.g., bounce height, speed of velocity decay and trajectory length. While no 43 
individual feature is perfectly diagnostic of elasticity, variations across different 44 
trajectories are also not random because they result from lawful physical constraints. 45 
By observing a number of examples, the brain could learn the dominant feature 46 
dimensions along which bouncing objects vary and represent elastic objects within the 47 
space of these features. A given heuristic (such as the bounce height ratio suggested by 48 
Warren and others) could be thought of as a special instance of this, in which the brain 49 
might identify just one feature along which trajectories are varying and thus elasticity 50 
judgments will rely on. However, another possibility is that the brain encodes elastic 51 
objects along multiple different features which would lead to a more robust 52 
representation in naturalistic settings. By considering different visual features, e.g., 53 
number of bounces and bounce height ratio, the brain could overcome the potential 54 
pitfalls of single heuristics. 55 
 56 
This idea leads to several testable predictions, which we evaluate here. First, motion 57 
features can be used to disentangle physical elasticity from other confounding factors 58 
(such as initial speed). Second, the relation between physical elasticity and motion 59 
features can be learned through observation alone. Third, either a single motion feature 60 
(i.e., a heuristic) or a robust combination of several features can explain the pattern of 61 
successes and failures in human perception. To test these assumptions, we employed 62 
a data-driven approach. For this purpose, we simulated 100,000 short (4 sec) 63 
trajectories of a bouncing cube in a room (Figure 1A). The cube’s elasticity (coefficient 64 
of restitution) varied from 0.0 (not elastic) to 0.9 (very elastic) in ten steps. Importantly, 65 
we also varied the initial position, orientation, and velocity of the cubes to gain 10,000 66 
different trajectories for each level of elasticity. Although computer simulations are only 67 
approximations of the real world, we validated that they reproduce several crucial 68 
physical behaviors of bouncing objects (Paulun and Fleming, 2020). Only through 69 
simulation can we generate sufficient number and diversity of trajectories to identify 70 
and evaluate statistical regularities. We chose nonrigid, i.e., deformable, cubes as 71 
stimuli, because they result in chaotic and highly variable trajectories while being 72 
feasible in terms of the parameters to create and analyze them and are, thus, the ideal 73 
case example to study. Next, we identified 28 candidate 3D motion features (Figure 2A-74 
D, Table 1) based on the physics of bouncing objects, and previously proposed cues 75 
(Nusseck et al., 2007; Warren et al., 1987). We then determined how they statistically 76 
relate to physical elasticity in our dataset und used PCA to determine the optimal 77 
feature combination to predict elasticity. Our analysis revealed several competing 78 
hypotheses of how humans visually judge elasticity using motion features, all of which 79 
could be learned in an unsupervised fashion from observation alone. In a series of 80 
carefully designed experiments, we selected stimuli that systematically decouple these 81 
highly correlated alternative hypotheses and find the one that best predicts human 82 
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perception on a stimulus-by-stimulus basis. To begin, we first established human 83 
accuracy and consistency in elasticity perception in a random subset of our dataset as 84 
a benchmark to test out models of perception against.  85 
 86 

Results 87 

Observers accurately infer elasticity, but make systematic errors  88 

Fifteen observers rated the apparent elasticity of bouncing cubes in 150 simulated 89 
animations—fifteen different trajectories for each of the ten elasticities (see Methods 90 
and Figure 1A and Video S1). Although the initial speed, position, and orientation of the 91 
cubes varied randomly, yielding widely variable trajectories, observers were very 92 
accurate at estimating the cube’s relative elasticity (Figure 1B). Average ratings 93 
increased systematically with physical elasticity (linear regression: R2 = .84, F(1, 148) = 94 
748.73, p < .001). However, if observers had perfect elasticity constancy, they would 95 
give videos showing the same elasticity the same ratings. This is not what we found: 96 
Cubes with identical physical elasticity were perceived to have different elasticities 97 
(average SD per elasticity level was 0.09 and significantly different from zero: t(9) = 98 
16.40, p < .001). Importantly, the pattern of errors was not random but highly consistent 99 
between different observers (r = .91 ± .04; M ± SD) as well as within repeated ratings of 100 
the same individual (r = .90 ± .04). In fact, there was no significant difference between 101 
intra- and inter-observer variability (t(14) = 2.08, p = 0.056). What causes this systematic 102 
pattern of errors? If humans represent elastic objects in terms of their characteristic 103 
motion features, perceptual errors should occur whenever a trajectory falls onto an 104 
“atypical location” in that feature space. In the following, we test this prediction. 105 

Figure 1. Stimuli and results of Experiment 1. A) Example stimuli of lowest (e = 0.0) 106 
and highest elasticity (e = 0.9), frames of the animations were overlaid for illustration 107 
purposes (see also Video S1). Even though both images in each row show the same 108 
cube (i.e., the same physical properties), the trajectories are different because we 109 
randomly varied the initial speed, position, and orientation. B) Average elasticity ratings 110 
of Experiment 1 together with a linear fit. Dots of the same color show simulations of the 111 
same elasticity but varying initial parameters.  112 

 113 
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Motion features disentangle physical elasticity from other latent 114 

factors 115 

We propose that the brain represents trajectories of bouncing objects using one or more 116 
spatiotemporal features and infers elasticity from their systematic variation. To test this 117 
hypothesis, we explored a set of motion features derived from the 3D trajectories of the 118 
object. We started with 28 potential features that between them capture many aspects 119 
of bounce trajectories (Table 1; see Table S1 for additional details, Figures S1-2). The 120 
features were selected by: (a) consideration of the physics of ideal bouncing objects, (b) 121 
proposals from previous literature (Nusseck et al., 2007; Warren et al., 1987), and (c) 122 
subjective observations of the simulations. Some features describe characteristics of 123 
individual bounces (e.g., average bounce height, rebound velocity) or measure the 124 
coefficient of restitution in simplified, idealized settings (e.g., bounce height ratio). 125 
Others capture summary statistics that integrate over time and might be useful in 126 
realistic scenes that deviate from ideal conditions (e.g., number of bounces, movement 127 
duration; Figure 2A-B). Such statistics provide several different ways of measuring how 128 
quickly the object dissipates kinetic energy as it bounces around. All motion features 129 
are stimulus computable from observable quantities, i.e., positions and changes of 130 
positions over time, and derived from first principles. We computed the motion features 131 
from the trajectories of the cube’s center of mass (CoM) and eight corners for all 132 
100,000 simulations (see Methods). Although object rotation and deformation are 133 
important for a complete physical representation of the object’s motion, we do not 134 
consider them here, as our previous findings show that they have a negligible effect on 135 
the perceived elasticity in these stimuli (Paulun and Fleming, 2020). With this exception 136 
we aimed to achieve a comprehensive characterization of the trajectories by defining a 137 
diverse set of features to follow a data-driven approach and constrain our hypothesis 138 
space based on the data rather than a priori assumptions. 139 

 140 

Table 1. Motion features with % variance explained in physical elasticity, see Table S1.  
Features< 5% were excluded from further analysis. 

% Feature (acronym; unit) 
82.29 Movement duration until the cube stopped moving. (movDur; sec) 
78.93 Number of bounces from the floor, the ceiling and the walls. (nBounce) 
78.92 Duration until the cube landed after the last bounce from any wall. (bounceDur; sec) 
77.87 Number of bounces from the floor. (nBounceFloor) 
67.27 Cumulative length of the motion trajectory. (trajLen; m) 
52.76 Mean ratio of energy before and after a bounce. (mEnerRatio) 

51.91 Mean acceleration over time. (mAccel; m/s2) 
50.80 Conserved energy over time. (consEner) 
45.85 Maximum ratio of energy before and after a bounce. (maxEnerRatio) 
44.86 Maximum length of bounce arcs from floor (maxArcLenFloor; m) 
41.80 Mean ratio of incident to rebound velocity of all bounces. (mVelRatio) 
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39.42 Maximal ratio of incident to rebound velocity of all bounces. (maxVelRatio) 
36.51 Maximal ratio of durations of consecutive bounces from the floor. (maxBounceDurRatio) 
35.46 Maximal duration of individual bounces from the floor. (maxBounceDur; sec) 
35.21 Maximal rebound velocity of bounces from every wall. (maxReboundVel; m/s) 

35.13 
Maximal ratio of bounce heights of two consecutive bounces from the floor. 
(maxBounceHtRatio) 

35.10 Maximal height of bounces from the floor. (maxBounceHt; m) 
30.84 Mean ratio of bounce durations of consecutive bounces from the floor. (mBounceDurRatio) 
23.42 Mean ratio of bounce heights of two consecutive bounces from the floor. (mBounceHtRatio) 
16.25 Maximal length of bounce arcs, i.e., trajectory between consecutive bounces. (maxArcLen; m) 
6.24 Mean height of bounces from the floor. (mBounceHt; m) 
5.49 Mean velocity over time. (mVel; m/s) 
5.25 Mean length of bounce arcs, i.e., trajectory, between consecutive bounces. (mArcLen; m) 
4.06 Mean length of bounce arcs from floor. (mArcLenFloor; m) 
1.86 Difference between movement and bounce duration. (otherMotionDur; sec) 
0.77 Mean duration of individual bounces from the floor. (mBounceDur; sec) 
0.15 Mean height of the object over time. (mHeight; m) 
0.01 Mean rebound velocity of bounces from all walls. (mReboundVel; m/s) 

 141 

First, we evaluated how well each of the individual features captured the variance 142 
across different elasticities. We found that many features varied systematically with 143 
physical elasticity (Figure 2C-D & 3B, Table 1). The most diagnostic features (which 144 
share the most variation with physical elasticity) were those that integrate information 145 
over time, such as movement duration or the number of bounces. Interestingly, we 146 
found that heuristics that were previously identified for idealized settings, e.g., related 147 
to the height and duration of bounces, were not among the best features in our complex 148 
scenario. We narrowed our hypothesis space by excluding features that explained < 5 % 149 
of the variance from further analysis. We found that the remaining 23 features were 150 
significantly correlated with one another across the set of 100,000 trajectories (mean 151 
absolute correlation, M = 0.48; see Figure S3A-B). To identify independent dimensions 152 
of variation, we applied principal component analysis (PCA) to the normalized and 153 
equalized motion features of all trajectories. Representing the trajectories in the space 154 
of the first two PCs reveals that physical elasticity varies largely along the first 155 
dimension (Figure 2E). Indeed, we found that ground truth elasticity and the first PC 156 
share 82.83% of their variance. In other words, physical elasticity emerges as the latent 157 
variable driving most variance in the feature representation of all trajectories. Although 158 
adding further PCs necessarily increases the explained variance of the dataset (Figure 159 
S3C), adding more PCs to a multiple linear regression model fitted to physical elasticity 160 
does not increase the shared variance by much (with all PCs: 86.25%). Moreover, while 161 
PC1 robustly predicts physical elasticity, it is mostly independent of the other latent 162 
parameters we used to initialize our simulations (e.g., velocity; all < 1.0%, Figure S3D). 163 
Thus, this linear combination of motion features (see Figure S4 for feature loadings) 164 
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successfully disentangles physical elasticity from other scene factors that contribute to 165 
the raw physical trajectory of bouncing objects. Notably, this feature weighting is not the 166 
result of a fitting process but emerges naturally and without supervision from the 167 
statistics across many examples. This underlines the potential of motion features to 168 
form a statistical appearance model of bouncing objects in a completely data-driven 169 
fashion. In the following, we test whether PC1 can explain the perceptual patterns found 170 
in Experiment 1 (‘multi-feature model’). Importantly, applying a PCA to the raw motion 171 
trajectories (Figure 2F) does not yield comparable elasticity estimates—highlighting the 172 
crucial role of appearance features.  173 

Figure 2. Spatiotemporal motion features of bouncing objects. A) Example trajectory 174 
of a low (e = 0.0) and high (e = 0.9) elastic cube, each dot represents one frame; color 175 
gradient represents movement duration. B) The same two trajectories, red dots 176 
represent bounces off the floor. C) Distribution of movement durations in the set of 177 
100,000 trajectories, true elasticity is color-coded. D) Distribution of “number of 178 
bounces off the floor” in the set of 100,000 stimuli. E) All 100,000 simulations in the 179 
space of the first two PCs resulting from a PCA on the motion features (“feature space”). 180 
Physical elasticity (color-coded) seems to vary mainly along the first PC, which explains 181 
most of the variance, see Figure S3C-D. F) 100,000 trajectories in the space of the first 182 
two PCs resulting from a PCA on the raw trajectories. Rather than physical elasticity 183 
(color-coded), the PCs seem to be related to the position of the cube in 3D space, see 184 
Figure S3E-F. Note that although the initial position of the cube is uniformly sampled, its 185 
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3D position over time is biased due to gravity. This results in a tilted square in the 2D 186 
representation of the PCs. 187 

 188 

Optimal motion features predict elasticity perception 189 

Having established that motion features are highly diagnostic of physical elasticity and 190 
that their relation to elasticity can be learned without supervision from observation 191 
alone, our analysis revealed several strong hypotheses for how the brain could visually 192 
infer elasticity. Next, we sought to answer the key question whether the human brain 193 
relies on a single motion feature (i.e., a heuristic) when estimating elasticity or instead 194 
combines different visual features to a potentially more robust estimate, similar to PC1. 195 
Note that besides PC1, we also tested a more traditional precision-based maximum-196 
likelihood estimation (MLE) model of cue combination in which the features are 197 
weighted according to their reliability, i.e., their weights are inversely proportional to 198 
their variance. The MLE model was overall highly correlated with the PC1 model (r = .98 199 
over the 100k simulations) but performed slightly worse in predicting elasticity (physical 200 
and perceived, see Figure S5). We therefore considered PC1 as the stronger cue 201 
combination model to test against individual heuristics.  202 

Interestingly, we found that motion features that turned out to be good, i.e., diagnostic, 203 
heuristics of physical elasticity, were also the best to predict perceived elasticity in 204 
experiment 1 (Figure 3B). Strikingly, movement duration, the best feature for predicting 205 
physical elasticity, was also the best to predict perceived elasticity (R2 = .91, F(1, 148) = 206 
1515.1, p < .001, Figure 3A-B). On a stimulus-by-stimulus basis, movement duration 207 
was a better predictor of human ratings than physical elasticity (evidence ratio: 208 
wmovDur/wPhysics = 1.51e+20). Can a combination of features outperform this? We find that 209 
a multi-feature model, i.e., PC1, is a very good predictor of perceived elasticity in 210 
Experiment 1 (linear regression: R2 = .89, F(1, 148) = 1210.5, p < .001, see Figure 3B-C). 211 
This is impressive given that the feature weighting was derived from observing the 212 
covariation of features in a large data set rather than a fitting procedure to the 213 
perceptual (or any) data. PC1 predicts perception better than the ground truth does 214 
(evidence ratio: wFeatureModel/wPhysics = 3.38e+13), but worse than movement duration 215 
(evidence ratio: wmovDur/wFeatureModel = 4.46e+06; wmovDur ≈ 1). However, the predictions of 216 
both models are strongly correlated (r = .95, p < .001, in the complete data set). In 217 
Experiment 2 we therefore systematically decouple their predictions. 218 
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 219 

Figure 3. Prediction of perceived elasticity by different compteting models. A) 220 
Perceived elasticity (in Experiment 1) as a function of the prediction made by the 221 
statistically optimal feature: movement duration. B) Explained variance in terms of 222 
perceived elasticity (in Experiment 1) as a function of explained variance of physical 223 
elasticity (in the data set of 100,000) for individual features (blue) and the multi-feature 224 
model (PC1, red). The noise ceiling shows the average explained variance between 225 
individual subjects and the average subject (± 95%-CI). C) Rated elasticity from 226 
Experiment 1 as a function of the prediction made by the feature combination from PC1, 227 
i.e., the multi-feature model.  228 

 229 

When observing complete motion trajectories people use movement 230 

duration as a heuristic to elasticity  231 

The aim of Experiment 2 was threefold: First, we systematically decoupled the 232 
predictions of the multi-feature model from those of the movement duration heuristic to 233 
bring both models into conflict. Second, in order to test whether any of the other 234 
features are—individually—a better predictor of perceived elasticity, we systematically 235 
decoupled all other features from the multi-feature model. Since it is impossible to 236 
isolate each of the 23 features from all other features one by one, we decoupled each 237 
feature from the weighted combination of all features to test its causal contribution to 238 
elasticity perception. In doing so, we are able to overcome the purely correlational 239 
analysis reported so far and experimentally tests 24 competing hypotheses at once, 240 
thereby going beyond previous studies (Bi et al., 2019; Kawabe et al., 2015; Paulun et 241 
al., 2017, 2015; Schmid and Doerschner, 2018; Schmidt et al., 2017; Van Assen et al., 242 
2018). Third, because any good model of elasticity perception should be able to predict 243 
the pattern of errors on a stimulus-by-stimulus basis, all stimuli in this experiment had 244 
the same physical elasticity, i.e., all perceptual differences are illusory. This provides an 245 
even more stringent test of our 24 competing models.  246 

For this purpose, we simulated another 90,000 motion trajectories of the cube with 247 
medium elasticity (e = 0.5). From the total of 100,000 simulations of medium elasticity, 248 
we selected 23 sets of stimuli (one for each of the candidate motion features) for which 249 
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individual feature and multi-feature model predictions were essentially uncorrelated (|r| 250 
< .05; see Methods and Figure S6 for more details). A new group of 30 participants 251 
judged the elasticity of these stimuli. Note that this rigorous stimulus selection process 252 
risks diminishing the very effects we seek to find: We first narrow the range of features 253 
by keeping elasticity constant and then select stimuli that, by definition, include outliers 254 
with a low correlation between a given feature and PC1.  255 

Although these careful steps may have limited our statistical power, Experiment 2 256 
provided clear results. For each feature, Figure 4A shows the correlation of perceived 257 
elasticity in the specific stimulus set (chosen for that feature) with the feature prediction 258 
(x-axis) and the multi-feature model prediction (y-axis). Seventeen features show a 259 
significantly lower correlation with perception than the multi-feature model (p < .0022, 260 
Bonferroni corrected). Only for one feature—movement duration—does the correlation 261 
with perception (r = .45) significantly exceed the multi-feature model (r = .07, p < .0022). 262 
In other words, when brought directly into conflict, movement duration can explain 263 
perceived elasticity better than a weighted feature combination. Thus, the high 264 
correlation between the multi-feature model and perception in Experiment 1 is 265 
presumably mediated by the contribution of movement duration (which has the third 266 
highest loading of all features to PC1). Is movement duration also driving the high 267 
correlations between the multi-feature model and perception in the other stimulus sets 268 
of Experiment 2? Figure S6E shows the partial correlations between perception and 269 
single features vs. perception and multi-feature model prediction when controlling for 270 
the effect of movement duration. The correlations between perception and multi-271 
feature model (r = .56 ± .14 (M ± SD)) decrease significantly when controlling for 272 
movement duration (r = .12 ± .11; t(21) = 12.97, p < .001), indicating that movement 273 
duration is indeed the driving factor.  Across all stimuli, movement duration was—274 
again—the best predictor of perceived elasticity (R2 = .78, F(1, 223) = 787.61, p < .001, 275 
see also Figure 4B and S5D). Thus, the longer an object moved in the scene, the more 276 
elastic it appeared. Experiment 2 showed that this relation holds true even if physical 277 
elasticity is constant, leading to a powerful perceptual illusion. Video S2 demonstrates 278 
these large, systematic, and robust illusory differences in apparent elasticity.  279 

 280 
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Figure 4. Results of the decorrelation experiment. A) Correlation of the pooled 281 
perceptual ratings with the multi-feature model (y-axis) and the individual features (x-282 
axis). Each dot represents the correlations for one set of stimuli that were specifically 283 
selected to decouple the prediction of one feature from the model. Features that fall 284 
below the diagonal (light blue shaded area) exceed the model, i.e., their predictions 285 
correlate more strongly with perception than the model does. Filled dots indicate a 286 
significant difference between the two correlation coefficients. Error bars show 95% 287 
confidence intervals. Please note, that the correlation coefficients are lower than in 288 
Experiment 1 because the data is pooled across participants (instead of averaged) to get 289 
a more reliable estimate from the small number of stimuli in each set. For the noise 290 
ceiling, we calculated for each stimulus set how much the pooled responses correlate 291 
with the average response. The noise ceiling shows the mean (± 95 % - CI) across 292 
features. B) Average elasticity ratings for all stimuli of Experiment 2 as a function of 293 
movement duration together with a linear fit. Elasticity ratings clearly increase with an 294 
increase in movement duration. All stimuli had the same physical elasticity of 0.5 (grey 295 
line). Thus, all perceived differences in elasticity between stimuli are illusory. See Video 296 
S2 and Figure S6. 297 

 298 

Observers flexibly switch to another heuristic when movement 299 

duration is unobservable  300 

Our everyday experience suggests that we are able to judge an object's elasticity even 301 
without observing for how long the object moves, e.g., if someone catches it before it 302 
comes to rest. To study systematically whether and how well people can estimate 303 
elasticity when this one cue is not available, we truncated a subset of the videos from 304 
Experiment 1 to exactly 1 second and presented these to a new group of 15 observers in 305 
Experiment 3, see Video S3. In these videos it was not possible to observe movement 306 
duration. Yet, we found that the average elasticity ratings increased systematically with 307 
physical elasticity (linear regression: R2 = .73, F(1, 78) = 215.41, p < .001, see Figure 308 
S7A) and showed a near-perfect correlation (r = .97, p < .001) with ratings for the full 309 
movies (Exp. 1; see Figure 5A), although the consistency between observers was 310 
moderately lower here (r = .80 ± .16, M ± SD) than in Experiment 1 (r = .91 ± .04; t(28) = -311 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2025. ; https://doi.org/10.1101/2023.03.24.534031doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.534031
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

2.63, p = .05). How do observers infer elasticity when movement duration cannot be 312 
observed? Do they rely on a different heuristic? 313 

Truncating the videos altered most feature values, not just movement duration. Figure 314 
5B shows how well the multi-feature model and the individual features can predict 315 
physical as well as perceived elasticity in 1-sec movies. The multi-feature model was 316 
the best at explaining both physics and perception and again better explains perception 317 
than ground truth physics (R2 = .77, F(1, 78) = 260.27, p < .001; evidence ratio: 318 
wFeatureModel/wPhysics = 296.05; see also Figure S7B). Several individual features, particularly 319 
those measuring the presence of large bounces in the trajectory (such as 320 
maxArcLenFloor or maxBounceHt), also capture a large proportion of the variance in 321 
perceived elasticity. To disentangle these competing, but correlated hypotheses, we 322 
conducted Experiment 4 following the same logic as in Experiment 2: From the dataset 323 
of 100,000 cubes of medium elasticity, we first identified the simulations that had a 324 
movement duration of at least 1 sec. For this subset, we calculated the motion features 325 
for the first second and then selected 22 sets of stimuli (one set for each feature except 326 
movement duration) in which the prediction of that feature individually was 327 
uncorrelated with the prediction of the multi-feature model. A new group of 30 328 
observers estimated elasticity in these 1-sec stimuli.  329 

Again, we found that one of the most diagnostic features—maximum bounce height—330 
showed a significantly higher correlation with perception than the multi-feature model (r 331 
= .54 > r = .25, p < .0023, see Figure 5C) when brought directly into conflict, and that 332 
was the best predictor of perceived elasticity across all stimuli in Experiment 4 (R2 = .74, 333 
F(1, 197) = 565.56, p < .001, see Figure 5D and S6C). Thus, the higher the largest bounce 334 
was, the more elastic the cube appeared even if the true elasticity was equal (see Video 335 
S4). There was only one other feature—bounce duration—for which the correlation 336 
between feature and perception was larger than the correlation between multi-feature 337 
model and perception (r = .36 > r = .10, p < .0023). However, bounce duration did not 338 
vary much in the stimulus set, because in most simulations the cube would have 339 
bounced for longer than 1 second had the movie not been truncated (see Figure S7E). 340 
Therefore, bounce duration was only a diagnostic feature when it was notably shorter 341 
than one second. For most (12/22) features, we found that the multi-feature model 342 
predicted the data better than the individual features (p < .0023, Bonferroni corrected). 343 
Akin to the results of Experiment 2, these high correlations seemed to be driven by the 344 
best single feature, maximum bounce height (see Figure S7D). More precisely, the 345 
correlations between perception and multi-feature model (r = .49 ± .16 (M ± SD)) 346 
decreased significantly when controlling for maximum bounce height (r = .23 ± .09; t(21) 347 
= 6.65, p < .001). 348 

In sum, Experiment 4 showed that observers reported robust perceptual differences 349 
between truncated stimuli even though all had the same physical elasticity. Perceived 350 
elasticity was best explained by one of the most predictive features, maximum bounce 351 
height. Intuitively this makes sense, as the maximal bounce height is easy to compute 352 
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(i.e., requires only one position) and it occurs within the first second in most trajectories 353 
(94.1%, see Figure S7F).  Taken together, this suggests that if unable to fully observe an 354 
object’s movement until it comes to a standstill, we instead form an impression of its 355 
elasticity based on the highest of the bounces that it makes. 356 
 357 

Figure 5. Results of Experiments 3 and 4 with truncated movies. A) Average 358 
perceived elasticity in 1-sec movie clips (Exp. 3) as a function of the movement duration 359 
of the apparent elasticity in full movies of the same stimuli. Physical elasticity is color-360 
coded. B) Explained variance in terms of perceived elasticity (in Experiment 3) as a 361 
function of explained variance of physical elasticity in 1-sec movies (in the data set of 362 
100,000) for individual features (blue), the multi-feature model (red). For a legend of 363 
individual features see Figure 2G. The noise ceiling shows the average explained 364 
variance between individual subjects and the average subject (± 95%-CI). C) Correlation 365 
of the pooled perceptual ratings with the multi-feature model (y-axis) and the individual 366 
features (x-axis). Each dot represents the correlations for one set of stimuli that were 367 
specifically selected to decouple the prediction of one feature from the model. Features 368 
that fall below the diagonal (light blue shaded area) exceed the model, i.e., their 369 
predictions correlate more strongly with perception than the model does. Filled dots 370 
indicate a significant difference between the two correlation coefficients. Error bars 371 
show 95% confidence intervals. For the noise ceiling, we calculated for each stimulus 372 
set how much the pooled responses correlate with the average response. The noise 373 
ceiling shows the mean (± 95 % - CI) across features. D) Average elasticity ratings of 374 
Experiment 4 as a function of the maximum bounce height together with a linear fit. 375 
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Elasticity ratings clearly increase with an increase in maximum bounce height. All 376 
stimuli had the same physical elasticity of 0.5 (grey line). See Videos S3 and S4, and 377 
Figure S7. 378 

Discussion 379 

Here we propose that when visually judging the physical properties of objects and 380 
materials, people often represent them in terms of their typical appearance—i.e., in 381 
terms of their typical mid-level spatiotemporal features. Specifically, our results 382 
suggest that when asked to judge the elasticity of a bouncing object, observers judge 383 
how long the object moves. If the motion duration is cut short, i.e., it cannot be 384 
observed, observers instead rely on the maximal bounce height to judge elasticity. This 385 
implies a flexible and computationally efficient strategy.  386 

While this study is not the first to suggest a role of mid-level features in the estimation of 387 
physical properties (Bi et al., 2019; Bi and Xiao, 2016; Kawabe et al., 2015; Kawabe and 388 
Nishida, 2016; Paulun et al., 2017, 2015; Schmid and Doerschner, 2018; Schmidt et al., 389 
2017; Van Assen et al., 2018), it overcomes three critical limitations of previous work. 390 
First, we assess the statistical relations between a diverse set of potential visual 391 
features and physical elasticity in a large dataset and thereby show how—in principle—392 
observing the variations of motion features in many examples spontaneously reveal 393 
elasticity and establish which features (or their combination) are best at doing so. 394 
Second, to the best of our knowledge, no study has yet manipulated the proposed visual 395 
cues to physical properties in naturalistic stimuli. Here, we achieved such manipulation 396 
by using a large dataset to identify stimuli that decouple the inherently correlated 397 
predictions of different models. Third, we identified illusory stimuli that decouple 398 
feature predictions from ground truth physics. Thus, we not only predict the good overall 399 
performance of observers in elasticity estimation but, critically, also their specific 400 
perceptual errors on a stimulus-by-stimulus basis. Our findings have implications on 401 
both theoretical and methodological levels. 402 

Learning. We have previously hypothesized that by observing the outside world and its 403 
inherent statistical relations (Fleming, 2014; Fleming and Storrs, 2019), the brain can 404 
learn—in an unsupervised manner—many dimensions along which objects in our 405 
environment vary. The statistical appearance model proposed here is not intended as a 406 
model of this learning process, but rather a proof of principle about the learnability of 407 
the cues and the impact that such unsupervised statistical observation approaches 408 
have on perception. We found that by observing various motion features of bouncing 409 
cubes, elasticity emerges spontaneously as the main dimension of variation. The 410 
motion features themselves were not the result of learning from the stimulus set but 411 
instead were explicit operationalizations of our hypotheses. This approach allowed 412 
testing the contribution of a large, yet testable number of interpretable motion features 413 
and their combination. Would similar features emerge from applying unsupervised or 414 
self-supervised learning algorithms? It would be interesting to investigate this question 415 
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within different frameworks, from deep learning to program learning or simulation-416 
based learning. For example, might the same heuristics be derived within a mental 417 
physics simulation model? How would the latent feature space of an (unsupervised) 418 
deep learning model compare to the motion features identified here? However, it would 419 
be practically impossible to test the individual contribution of the thousands of features 420 
in the trained network to perceived elasticity. Yet, here, it is precisely this decoupling of 421 
competing hypotheses that ultimately enabled us to predict human perception on a 422 
stimulus-by-stimulus basis. 423 

Mid-level features. One of our key findings is that when asked to estimate the elasticity 424 
of bouncing objects, observers judge the movement duration or the maximal bounce 425 
height in case the duration is visibly cut short. Crucially, this implies that the brain does 426 
represent multiple features of bouncing objects at a time but does not combine them in 427 
the sense of classic cue combination (Ernst and Banks, 2002) to estimate the latent 428 
parameter (elasticity). If the brain represents bouncing objects in terms of their visual 429 
motion features, as our results suggest, ‘estimating elasticity’ means determining the 430 
relative position of the observed object on the feature manifold. Across four 431 
experiments, we found that observers base their elasticity estimates on only 2-3 visual 432 
features. Why would the brain rely on these and not on other features? Presumably, the 433 
most effective features are both salient and inexpensive to compute. Movement 434 
duration and maximum bounce height both capture important events in the observed 435 
motion, i.e., the largest bounce and the end of the motion. It is not trivial to determine 436 
the computational costs of different features. Yet, at a minimal level, it seems plausible 437 
to assume that single measures, e.g., height or duration, will be computationally 438 
cheaper than their derivatives or ratios. In that sense, movement duration and 439 
maximum bounce height, are among the computationally simplest features we tested. 440 
Duration and spatial distance are quantities the visual system can estimate reliably and 441 
accurately (Buhusi and Meck, 2005; Eagleman, 2008; Eagleman et al., 2005; Epstein and 442 
Rogers, 1995).  443 

Even though we found strong evidence that humans base their elasticity estimates 444 
mainly on two motion features, some other features may play an important role in 445 
identifying the stimulus as a bouncing object in the first place. A key assumption of our 446 
model is that the observed motion is due to a semi-elastic object bouncing in an 447 
environment, as opposed to some other cause (e.g., animate motion (Scholl and 448 
Tremoulet, 2000), fluid flow (Kawabe et al., 2015; Morgenstern and Kersten, 2017; Van 449 
Assen et al., 2018)). If applied to other trajectories the resulting ‘elasticity estimate’ 450 
would be meaningless, e.g., for a feather gliding in the wind or a driving car. An 451 
important line of future research is to investigate the cues underlying the recognition 452 
process through which we identify the stimulus as a bouncing object in the first place. 453 

The motion features we tested here are stimulus-computable, yet they assume a 454 
perfect representation of the object’s trajectory. As such, they oversimplify the input 455 
available to elasticity-estimating processes in the biological brain. For example, 456 
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humans have a more accurate representation of image-plane motions than motion in 457 
depth (Murdison et al., 2019; Welchman et al., 2008), and may not be equally sensitive 458 
to all velocities in these displays. Thus, to transform the heuristic model into a truly 459 
image-computable one, future work will also need to incorporate aspects of low-level 460 
vision, including object segmentation. Yet, we reasoned that important insights into the 461 
estimation of material properties can still be gained even without fully modeling all 462 
preceding processing stages. 463 

Generalization. Deformable cubical objects produce diverse and complex trajectories. 464 
We have shown that visual motion features generalize across large variations caused by 465 
several independent factors. Movement duration and maximum bounce height are likely 466 
to generalize to some extent across other scenes and objects. For example, if the object 467 
had a different shape or if it interacted with other objects in a different space, higher 468 
elasticity objects would still tend to move longer and bounce higher. Participants 469 
presumably had little experience with bouncing non-rigid cubes prior to our 470 
experiments. Yet, they were broadly able to judge elasticity reliably, suggesting they 471 
could generalize from previous experience with other scenes and objects. In an 472 
experimental setting, it would be possible to break the relation between motion features 473 
and elasticity. For example, if the floor was completely inelastic, like sand, no object 474 
would rebound. It is, however, unlikely that human observers would be able to estimate 475 
the objects’ elasticity in these cases. Thus, although motion features would not capture 476 
physical elasticity, they might still be reliable predictors of perceived elasticity. Because 477 
our model is stimulus computable (based on the true or estimated 3D position), such 478 
hypotheses can be easily tested in future research.  479 

Simulation vs. heuristics. A current topic of active discussion is the extent to which 480 
physical perception and reasoning proceed through sophisticated but computationally 481 
costly internal simulations (Bates et al., 2019; Battaglia et al., 2013; Hamrick et al., 482 
2016; Wu et al., 2015; Yildirim et al., 2018) or cheaper but potentially less accurate 483 
heuristics (Kubricht et al., 2017; Ludwin-Peery et al., 2021; Paulun et al., 2017, 2015). 484 
How do our results fit into this theoretical spectrum? Representing objects and 485 
materials in terms of their appearance features entails an understanding of the 486 
observable consequences of natural variations between objects, e.g., the ways in which 487 
elastic objects bounce. Yet, the resulting estimation strategy appears like a classic 488 
heuristic, i.e., a simple but sufficient rule of thumb such as “the longer it moves, the 489 
more elastic it is”. In fact, our results could provide an explanation of how the brain 490 
derives such heuristics from observation alone and of how it switches from using one 491 
feature to another (i.e. when there is no variation along the first feature dimension). This 492 
does not mean that observers cannot simulate possible future behaviors of objects, 493 
such as how the trajectory of a bouncing cube continues, just that they may not choose 494 
to do so when simpler yet near-optimal heuristics are available. This interpretation is 495 
consistent with previous work by Battaglia and colleagues (Battaglia et al., 2013), who 496 
found that when a simple heuristic is a more efficient and optimal way to make a 497 
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prediction (e.g., “How far will the blocks fall when the block tower falls over?”, 498 
observers tend to use such heuristics (e.g., height of the tower) rather than simulation.  499 
Thus, we suggest that observers can draw on different forms of computation, but do so 500 
taking into consideration the relative costs and demands of the specific task at hand—501 
an example of bounded or computational rationality (Gershman et al., 2015; Gigerenzer 502 
and Todd, 2001). For example, when asked to infer a single parameter (e.g., elasticity) 503 
from an observed trajectory, time- and energy-consuming simulations represent a poor 504 
allocation of resources when a simple read-out from the feature estimation provides 505 
high accuracy. However, visual features are likely too inaccurate when making time- or 506 
location-critical predictions about an object’s future trajectory (Diaz et al., 2013; Mann 507 
et al., 2019; Mrowca et al., 2018). Under these conditions, the additional costs 508 
associated with internal simulation may pay off. Similarly, when no standard heuristics 509 
apply, observers may use simulation even for physical inference of material properties, 510 
such as mass, as shown by Hamrick et al (Hamrick et al., 2016). Future studies should 511 
further investigate the different cognitive strategies humans use under various 512 
circumstances as well as the metacognitive process that switches between different 513 
strategies.    514 

Conclusion 515 

Visually estimating physical object properties is a crucial, yet computationally 516 
challenging task. The visual input is highly ambiguous because an object’s behavior 517 
depends on numerous entangled factors. Estimating the elasticity of a bouncing object 518 
requires disentangling the different causal contributions of elasticity, initial speed, 519 
position, and other factors. Using a ‘big data’ approach, we showed that representing 520 
trajectories in terms of their characteristic spatiotemporal features—such as the 521 
maximum bounce height or movement duration—yields elasticity estimates that are 522 
inexpensive to compute and robust to external factors. Our experiments suggest that 523 
the brain estimates elasticity by flexibly switching between a few single-feature 524 
heuristics based the information available in the stimuli. Our model explains both the 525 
broad successes and the systematic failures of human elasticity perception and 526 
correctly predicts a novel illusion in which appearance features maximally diverge from 527 
ground truth. Observers can draw on multiple cues and computations, and appear to 528 
select strategies with lower computational costs, i.e., computationally rationally. 529 
Similar principles might underlie the visual perception of other physical objects 530 
properties, such as mass or softness.  531 

 532 

 533 

 534 

 535 
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METHODS 536 

Experimental model and study participant detail 537 

Ninety undergraduate students (68 females) from the University of Giessen participated 538 
in the experiments (15 in Exp. 1 and 3, 30 in Exp. 2 and 4). Their average age was 24 539 
years (SD = 3.5 years). No person participated in more than one experiment. All 540 
participants were naïve with regard to the aims of the study and they gave written 541 
informed consent before the experiment. Participants were compensated with 8€/h. 542 
The experimental procedure was in accordance with the declaration of Helsinki and 543 
approved by the local ethics committee (LEK FB06) at Giessen University.  544 

Physical simulations 545 

The dataset was created with the Caronte physics engine of RealFlow 2014 546 
(V.8.1.2.0192; Next Limit Technologies, Madrid Spain), a 3D dynamic simulation 547 
software. The dataset contains 100,000 simulations of a cubical object (0.1 m3) 548 
bouncing in a cubical room (1.0 m3). We chose a cube as the target object because it 549 
produces a greater variety of trajectories than, for example, a sphere because the 550 
rebound direction depends not only on the direction of the object but also its 551 
orientation. We have previously shown that human observers can judge the elasticity of 552 
a bouncing cube in such a scene (Paulun and Fleming, 2020). We varied the cube’s 553 
elasticity in ten equal steps from 0.0 to 0.9. This value corresponds to the coefficient of 554 
restitution—the proportion of energy the cube retains upon collision. We created 10,000 555 
simulations for each level of elasticity by randomly varying its initial velocity, 556 
orientation, and position, while keeping all other parameters constant. We simulated 557 
121 frames at 30 fps of the cube moving through the room under gravity. In addition to 558 
the original dataset, we simulated another 90,000 trajectories of just one elasticity (0.5). 559 
As before, initial velocity, orientation, and position varied randomly. We used the 90,000 560 
simulations + 10,000 simulations of the medium elasticity from the original dataset to 561 
search for stimuli in Experiments 2 and 4. For all 190,000 simulations, we provide 3D 562 
positions of the cube’s center of mass (CoM) and its eight corners across all 121 frames 563 
[LINK WILL BE INCLUDED UPON ACCEPTANCE].  564 

Motion features and multi-feature model 565 

We calculated 28 motion features based on the CoM and the eight corners of the cube 566 
for all 100,000 simulations. The end of the cube’s movement was defined as the point at 567 
which its velocity dropped below 0.003 m/s, since simulated velocity never reaches 568 
zero. All other features were computed only for the frames in which the cube was 569 
moving. The exact definition of all 28 motion features is described in Table S1 and 570 
Figures S1-2. Next, we normalized every motion feature to a range between [0.0, 1.0] 571 
and equalized their histograms. We determined the R2-score, the shared variance with 572 
physical elasticity, for each feature and excluded features from further analysis if they 573 
explained <5% of the variance. We performed a principal component analysis (PCA) 574 
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with the remaining 23 features. The resulting scores of the first principal component 575 
(PC) were used to predict perceived elasticity, see Figure S3. 576 

 577 

Stimuli 578 

Experiment 1 contained 15 stimuli per level of elasticity, randomly selected from the 579 
original dataset (i.e., 150 stimuli). For Experiment 2 we selected 225 stimuli that 580 
systematically decoupled the predictions of each individual feature from both the multi-581 
feature model and physical elasticity. Specifically, for each of the 23 features we chose 582 
ten stimuli from the medium elasticity dataset for which the predictions of the individual 583 
feature and the multi-feature model were uncorrelated (|r| < 0.05), while spanning the 584 
widest possible range on both dimensions (Figure S6A). In Experiments 1 and 2, each 585 
stimulus was presented for the full duration of the cube’s movement. In Experiments 3 586 
and 4, only the first second of each stimulus was presented (and no stimulus had a 587 
movement duration that was shorter than 1 sec). For Experiment 3, we used a random 588 
subset of eight stimuli per elasticity level from the stimuli of Experiment 1 (i.e., 80 589 
stimuli). For Experiment 4, we selected 213 stimuli that systematically decoupled the 590 
predictions of each individual feature (except movement duration) from both the 591 
prediction of the multi-feature model and physical elasticity. The selection procedure 592 
was the same as in Experiment 2, but all stimuli were truncated to exactly one second.  593 

The simulations selected as stimuli were rendered using RealFlow’s built-in Maxwell 594 
renderer. The room was rendered with a white matte material, and the target object was 595 
rendered with a blue opaque material. The scene was illuminated brightly using an HDR 596 
map through the transparent ceiling. Stimuli of all experiments are available for 597 
download at [LINK WILL BE INCLUDED UPON ACCEPTANCE].  598 

 599 

Set up  600 

All experiments were conducted using the same setup. Stimuli were presented on an 601 
Eizo LCD monitor (ColorEdge CG277; resolution: 2560 × 1440 pixels; refresh rate: 60 Hz). 602 
Participants used a chin rest to maintain a constant viewing distance of 54 cm. At this 603 
distance, the stimuli had a visual angle of 19.6 x 19.6 degrees.  604 

Procedure 605 

All experiments followed the same basic procedure. Participants were instructed to 606 
watch a short movie of an object and rate its elasticity. Elasticity was defined to them as 607 
the property that distinguishes for example a bouncy ball from a hacky sack. On each 608 
trial, one stimulus was presented in a loop until a response was given. Below the movie, 609 
a horizontal rating bar was displayed, ranging from ‘not elastic’ to ‘very elastic’. 610 
Participants adjusted a slider along the bar to indicate their rating. Each stimulus was 611 
repeated three times over the course of the experiment, and all stimuli were presented 612 
in random order. Before the main experiment, participants completed ten practice 613 
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trials, one for each level of elasticity (unknown to participants) to provide an impression 614 
of the stimulus range without biasing their response scale. The experimental code was 615 
written in Matlab 2018a using Psychtoolbox 3 (Brainard, 1997; Kleiner et al., 2007; Pelli, 616 
1997) and is available here [LINK WILL BE INCLUDED UPON ACCEPTANCE].  617 

Analysis 618 

In all experiments, we averaged across repetitions to obtain one rating per stimulus 619 
from every participant. For Experiments 1 and 3, we calculated the average across 620 
participants, as well as inter- and intra-observer variability (standard deviation). We 621 
fitted linear regression models to the average elasticity ratings using either physical 622 
elasticity, the multi-feature model, or each of the individual feature as predictors. 623 
Models were compared using AIC values, specifically their Akaike weights and evidence 624 
ratios (Burnham and Anderson, 2004). Akaike weights represent the probability that a 625 
given model is the best among those tested, while evidence ratios indicate the relative 626 
likelihood of two competing models given the data. For Experiments 2 and 4, we pooled 627 
the data across participants. For each feature’s stimulus set, we computed correlations 628 
between pooled ratings and both the corresponding feature prediction and the multi-629 
feature model prediction. Pooling (rather than averaging) allowed more reliable 630 
estimation of the correlation coefficients based on full trial counts rather than just 10 631 
averages. For each feature, the resulting correlation coefficients were compared using a 632 
two-tailed significance test for dependent groups with one overlapping variable (Olkin, 633 
1967). Additionally, we computed the explained variance in perceived elasticity 634 
(averaged across participants) for each feature and the model across all stimuli, 635 
independent of the stimulus set.  636 

 637 

Supplemental information 638 

Document S1. Figures S1–S6 and Table S1. 639 
Video S1. Example stimuli from Experiment 1 (elasticity increases from left to right, full 640 
length movies), related to Figure 1. 641 
Video S2. Elasticity Illusion from Experiment 2 (movement duration increases form left 642 
to right, constant elasticity (e = 0.5)), related to Figure 4. 643 
Video S3. Example stimuli from Experiment 3 (elasticity increases from left to right, 644 
movies truncated to 1 second), related to Figure 5.  645 
Video S4. Elasticity Illusion from Experiment 4 (maximum bounce height increases from 646 
left to right, constant elasticity (e = 0.5)), related to Figure 5.  647 
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